5 вольт – одно из самых широко используемых напряжений. От этого напряжения питается большинство программируемых и непрограммируемых микроконтроллеров, всевозможных индикаторов и тестеров. Кроме того 5 вольт используется для зарядки всевозможных гаджетов: телефонов, планшетов, плееров и так далее. Я уверен, что каждый радиолюбитель может придумать множество применений этому напряжению. И в связи с этим я подготовил для вас три хороших на мой взгляд варианта блоков питания со стабилизированным выходным напряжением 5 вольт.

Первый вариант – самый простой.

Этот вариант отличается минимальным количеством используемых деталей, крайней простотой сборки и невероятной ‘живучестью’ – блок почти нереально убить. Итак перейдем к схеме.

Эта схема срисована с недорогой зарядки телефона, обладает стабилизацией выходного напряжения и способна выдавать ток до 0.5 А. На самом деле блок может выдавать и больше, но при повышении тока на выходе начинает срабатывать защита от перегрузки и выходное напряжение начинает уменьшаться. Защита от перегрузок и КЗ реализована на резисторе 10 ом в цепи эмиттера силового транзистора и маломощном транзисторе s9014 . При повышении тока через первичную обмотку трансформатора на эмиттерном резисторе создается падение напряжения, достаточное для открытия s9014, который в свою очередь притягивает базу силового транзистора к минусу, тем самым закрывая его и уменьшая длительность импульсов через первичную обмотку. При изменении номинала данного резистора можно увеличить или уменьшить ток срабатывания защиты. Сильно увеличивать не стоит, так как это повлечет за собой повышение нагрева силового транзистора и увеличит вероятность выхода последнего из строя.

Стабилизация выполнена на распространенном оптроне pc817 и на стабилитроне 3.9 В (при изменении номинала которого можно менять выходное напряжение). При превышении выходного напряжения, светодиод оптрона начинает светиться ярче, вызывая повышение тока через транзистор оптрона на базу s9014 и, как следствие, закрытие силового ключа. При уменьшении выходного напряжения, наоборот, транзистор оптрона начнет закрываться и s9014 не будет обрывать импульсы на базе силового ключа, тем самым увеличивая их длительность и, соответственно, увеличение выходного напряжения.

Особое внимание стоит уделить намотке трансформатора. Это зачастую является фактором, отталкивающим новичков от импульсных блоков питания. Итак, поскольку блок однотактный, нам потребуется трансформатор с немагнитным зазором между половинками сердечника. Зазор нужен для быстрого размагничивания сердечника и для предотвращения вхождения феррита в насыщение. Расчет трансформатора в идеале надо проводить в специальных программах, но для тех, кому этого делать не хочется, скажу, что в таких маломощных блоках питания первичная обмотка состоит из 190-220 витков провода 0.08-0.1мм. Грубо говоря, чем больше сердечник, тем меньше витков. Поверх первички в том же направлении мотается базовая обмотка. Она состоит из 7 – 15 витков того же провода. И в конце уже более толстым проводом мотается вторичка. Число витков 5-7. Крайне важно мотать все обмотки в одном направлении и помнить, где начало и конец. На схеме и на плате (которую можете скачать тут) точками указаны начала обмоток.

По схеме тут больше добавить нечего, она довольно простая и не требует особых навыков для сборки. Все компоненты можно изменять в пределах 25%, блок прекрасно будет работать. Силовой транзистор можно ставить любой обратной проводимости, соответствующей мощности и с расчетным напряжением коллектора не менее 400 вольт. Базовый транзистор – любой маломощный NPN с такой же цоколёвкой, как и s9014 .

Данный блок мощно применять там, где не нужен высокий ток, а нужна компактность, например для питания Arduino или для зарядки устройств с аккумуляторами небольшой ёмкости. Из плюсов данного бп можно отметить компактность, наличие защиты и стабилизации и, конечно, простоту сборки. Из минусов, пожалуй, только малая выходная мощность, которую кстати можно поднять, увеличивая ёмкость входного фильтрующего конденсатора.

Блок кстати выглядит так:


Второй вариант – более мощный.

Этот вариант очень похож на предыдущий, но мощнее. Блок имеет доработанную обратную связь и, следовательно, лучшую стабилизацию. Давайте взглянем на схему.

Схема представляет собой блок дежурного питания компьютерного бп. В отличие от предыдущей схемы в этой более мощный силовой транзистор, большая ёмкость входного фильтрующего конденсатора и, самое главное, трансформатор с большей габаритной мощностью. Всё это как раз и влияет на выходную мощность. Ещё в данной схеме, в отличие от первой, сделана нормальная стабилизация на TL431 – источнике опорного напряжения.

Принцип работы тут такой же, как и у предыдущего варианта. Через резистор 560 кОм на базу силового ключа подается начальное напряжение смещения, он приоткрывается и через первичную обмотку начинает течь ток. Нарастание тока в первичке вызывает нарастание тока во всех остальных обмотках, значит ток, возникающий в базовой обмотке, будет ещё сильнее открывать транзистор, и этот процесс продолжиться до тех пор, пока транзистор полностью не откроется. Когда он откроется, ток через первичку перестанет изменяться, а значит на вторичке перестанет течь и транзистор закроется и цикл будет повторяться.

Про работу защиты по току и стабилизации я подробно рассказал выше и не вижу смысла повторяться, так как тут всё работает точно так же.

Поскольку этот блок питания сделан на основе дежурки компьютерного блока, трансформатор я использовал готовый и не перематывал. Трансформатор EEL-19B. Расчетная габаритная мощность 15 – 20 Вт.

Как и в предыдущей схеме номиналы компонентов можно отклонять в пределах 25%, так как в разных компьютерных бп эта схема прекрасно работает с разными компонентами. Этот экземпляр, благодаря выходному току в 2 А можно использовать как зарядку для телефонов и планшетов или для прочих потребителей, требующих большой ток. Из плюсов данной конструкции можно отметить простоту добычи радиодеталей, ведь наверняка у каждого есть нерабочий блок питания от старого компа или телевизора, а там элементарной базы хватит на 3 – 4 таких бп. Так же плюсом можно считать немалый выходной ток и неплохую стабилизацию. Из минусов справедливо можно отметить размер платы (она довольно высокая из-за трансформатора) и возможность свиста при холостом ходу. Свист может появиться из-за неисправности какого-либо элемента, либо просто из-за слишком низкой частоты преобразования на холостом ходу. Под нагрузкой частота увеличивается.

Блок выглядит вот так:


Третий вариант – самый мощный.

Этот вариант для тех, кому нужна огромная мощность и прекрасная стабилизация. Если вам не жалко пожертвовать компактностью, этот блок специально для вас. Итак, смотрим схему.

В отличие от предыдущих двух вариантов, в этом применяется специализированный ШИМ – контроллер UC3843 , который, в отличие от транзисторов, как ни как умеет менять ширину импульсов и специально сделан для применения в однотактных блоках питания. Также у UCшки частота не меняется в зависимости от нагрузки и её можно четко рассчитать в специализированных калькуляторах.

Итак принцип работы. Начальное питание поступает через резистор 300 кОм на 7 ножку микросхемы, она запускается и начинает генерировать импульсы, которые выходят с 6 ножки и идут на полевик. Частота этих самых импульсов зависит от элементов Rt и Ct. С указанными компонентами частота на выходе 78,876 кГц. Вот кстати устройство микросхемы:

На этой микросхеме очень удобно реализовывать защиту по току, у неё для этого есть специальный вывод – current sense. При напряжении больше 1 вольта на этой ножке сработает защита и контроллер снизит длительность импульсов. Стабилизация здесь сделана при помощи встроенного усилителя ошибки current sense comparator. Поскольку на 2 выводе у нас 0 вольт, усилитель error amp. Всегда выдает логическую единицу и она идёт на вход усилителя current sense comparator, формируя тем самым опорное напряжение 1 вольт на его инвертирующем входе. При превышении напряжения на выходе блока питания, фототранзистор оптрона открывается и шунтирует 1 вывод микросхемы на минус. При этом снижается напряжение на инвертирующем входе current sense comparator, а так как на его не инвертирующем в момент открытия транзистора нарастает напряжение, то в какой то момент оно превысит напряжение на инвертирующем входе (при КЗ случается то же самое) и current sense comparator выдаст логическую единицу, что в свою очередь приведет к уменьшению длительности импульсов и, в конечном итоге, к снижению напряжения на выходе блока питания. Стабилизация в данном блоке питания очень хорошая, чтоб вы понимали, насколько она хорошая, при подключении резистора 1 Ом на выход, напряжение падает всего на 0.06 вольта, при этом на нём рассеивается 25 Вт тепла и он сгорает через пару секунд. Вообще этот блок может выдавать и 30 Вт и 35, так как в роле ключа здесь применён полевой транзистор. На схеме указан 4n60, но я поставил irf840, так как у меня их много. Микросхема может выдавать на управление полевиком ток до 1 А, что дает возможность без дополнительного драйвера управлять довольно мощными полевыми ключами.


Блоки питания с трансформаторами на частоту 50 Гц сегодня практически сдали свои позиции импульсным с высокой рабочей частотой, которые при той же выходной мощности имеют, как правило, меньшие габариты и массу, более высокий КПД. Основные сдерживающие факторы для самостоятельного изготовления импульсных блоков питания радиолюбителями - трудности с расчётом, изготовлением или приобретением готового импульсного трансформатора или ферритового магнитопровода для него. Но если для сборки маломощного импульсного блока питания использовать готовый трансформатор от компьютерного блока питания формфактора ATX, задача значительно упрощается.

У меня оказался в наличии неисправный компьютерный блок питания IW-ISP300J2-0 (ATX12V300WP4). В нём был заклинен вентилятор, пробит маломощный диод Шотки, а более половины всех установленных оксидных конденсаторов вздуты и потеряли ёмкость. Однако дежурное напряжение на выходе +5VSB было. Поэтому было принято решение, используя импульсный трансформатор источника дежурного напряжения и некоторые другие детали, изготовить другой импульсный источник питания с выходным напряжением 5 В при токе нагрузки до 2,5 А.

В блоке питания ATX узлы источника дежурного напряжения легко обособить. Он даёт напряжение 5 В и рассчитан на максимальный ток нагрузки 2 А и более. Правда, в старых блоках питания этого типа он может быть рассчитан на ток всего 0,5 А. При отсутствии на этикетке блока пояснительной надписи можно ориентироваться на то, что трансформатор источника дежурного напряжения с максимальным током нагрузки 0,5 А значительно меньше трансформатора источника на 2 А.

Схема самодельного импульсного блока питания с выходным напряжением 5...5,25 В при максимальном токе нагрузки 2,5 А изображена на рис. 1. Его генераторная часть построена на транзисторах VT1, VT2 и импульсном трансформаторе T1 по образу и подобию имевшейся в компьютерном блоке, из которого был извлечён трансформатор.

Рис. 1. Схема самодельного импульсного блока питания

Вторичные узлы исходного блока питания (после выпрямителя напряжения +5 В) было решено не повторять, а собрать по традиционной схеме с интегральным параллельным стабилизатором напряжения в качестве узла сравнения выходного напряжения с образцовым. Входной сетевой фильтр собран из имеющихся деталей с учётом свободного места для их монтажа.

Переменное напряжение сети 230 В через плавкую вставку FU1 и замкнутые контакты выключателя SA1 поступает на RLC фильтр R1C1L1L2C2, который не только защищает блок от помех из питающей сети, но и не даёт создаваемым самим импульсным блоком помехам проникнуть в сеть. Резистор R1 и дроссели L1, L2, кроме того, уменьшают бросок потребляемого тока при включении блока. После фильтра напряжение сети поступает на мостовой диодный выпрямитель VD1-VD4. Конденсатор C9 сглаживает пульсации выпрямленного напряжения.

На высоковольтном полевом транзисторе VT2 собран генераторный узел преобразователя напряжения. Резисторы R2-R4 предназначены для запуска генератора. Суммарная мощность этих резисторов увеличена, поскольку печатная плата блока питания, из которого они извлечены, под ними заметно потемнела в результате перегрева. По той же причине демпфирующий резистор R8 установлен большей мощности, а в качестве VD6 применён более мощный, чем в прототипе, диод.

Стабилитрон VD5 защищает полевой транзистор VT2 от превышения допустимого напряжения между затвором и истоком. На биполярном транзисторе VT1 собран узел защиты от перегрузки и стабилизации выходного напряжения. При увеличении тока истока транзистора VT2 до 0,6 А падение напряжения на резисторе R5 достигнет 0,6 В. Транзистор VT1 откроется. В результате напряжение между затвором и истоком полевого транзистора VT2 уменьшится. Это предотвратит дальнейшее увеличение тока в канале сток- исток полевого транзистора. По сравнению с прототипом сопротивление резистора R5 уменьшено с 1,3 до 1,03 Ом, резистора R6 увеличено с 20 до 68 Ом, ёмкость конденсатора C13 увеличена с 10 до 22 мкФ.

Напряжение с обмотки II трансформатора T1 поступает на выпрямительный диод Шотки VD8, размах напряжения на выводах которого около 26 В. Пульсации выпрямленного напряжения сглаживает конденсатор C15. Если по тем или иным причинам выходное напряжение блока питания стремится увеличиться, растёт напряжение на управляющем входе параллельного стабилизатора напряжения DA1. Ток, текущий через излучающий диод оптрона U1, увеличивается, его фототранзистор открывается. Открывшийся в результате транзистор VT1 уменьшает напряжение между затвором и истоком полевого транзистора VT2, что возвращает выходное напряжение выпрямителя к номинальному значению. Цепь из резистора R16 и конденсатора C16 предотвращает самовозбуждение стабилизатора.

Изготовленный источник питания оснащён стрелочным измерителем тока нагрузки PA1, что значительно повышает удобство пользования им, поскольку позволяет быстро оценить ток, потребляемый нагрузкой. Шунтом для микроамперметра PA1 служит омическое сопротивление обмотки дросселя L4. Светодиоды HL1 и HL2 подсвечивают шкалу микроамперметра.

На выходные разъёмы XP2 и XS1 напряжение поступает через фильтр L5C19. Стабилитрон VD9 с диодом VD10 предотвращают чрезмерное повышение выходного напряжения при неисправности цепей его стабилизации.

Рабочая частота преобразователя - около 60 кГц. При токе нагрузки 2,3 А размах пульсаций выпрямленного напряжения на конденсаторе C15 - около 100 мВ, на конденсаторе C18 - около 40 мВ и на выходе блока питания - около 24 мВ. Это очень неплохие показатели.

КПД блока питания при токе нагрузки 2,5 А - 71 %, 2 А - 80 %, 1 А - 74 %, 0,2 А - 38 %. Ток короткого замыкания выхода - около 5 А, потребляемая от сети мощность при этом - около 7 Вт. Без нагрузки блок потребляет от сети около 1 Вт. Измерения потребляемой мощности и КПД проводились при питании блока постоянным напряжением, равным амплитуде сетевого.

При длительной работе с максимальным током нагрузки температура внутри его корпуса достигала 40 о С при температуре окружающего воздуха 24 о С. Это значительно меньше, чем у многочисленных малогабаритных импульсных источников питания, входящих в комплекты различных бытовых электронных приборов. При токе нагрузки, равном половине заявленного максимального значения, они перегреваются на 35...55 о С.

Большинство деталей описываемого блока питания установлены на плате размерами 75x75 мм. Монтаж - двухсторонний навесной. В качестве корпуса применена пластмассовая распределительная коробка размерами 85x85x42 мм для наружной электропроводки. Блок в открытом корпусе показан на рис. 2, а его внешний вид - на рис. 3.

Рис. 2. Блок в открытом корпусе

Рис. 3. Внешний вид блока

При изготовлении блока следует обратить особое внимание на фазировку обмоток трансформатора T1, начало и конец ни одной из них не должны быть перепутаны. Применённый трансформатор 3PMT10053000 (от упомянутого выше компьютерного блока питания) имеет также предназначенную для выпрямителя напряжения -12 В обмотку, которая в данном случае не использована. Взамен него можно применить почти любой подобный трансформатор. Для ориентировки при подборе трансформатора привожу значения индуктивности обмоток использованного: I - 2,4 мГн, II - 17 мкГн, III - 55 мкГн.

В качестве PA1 применён микроамперметр M68501 (индикатор уровня от отечественного магнитофона). Учтите, что микроамперметры этого типа различных лет выпуска имеют очень большой разброс сопротивления измерительного механизма. Если установить нужный предел измерения подборкой резистора R13 не удаётся, нужно включить последовательно с дросселем L4 проволочный резистор небольшого сопротивления (ориентировочно 0,1 Ом).

При градуировке микроамперметра неожиданно выяснилось, что он очень чувствителен к статическому электричеству. Поднесённая пластмассовая линейка могла отклонить стрелку прибора до середины шкалы, где она могла остаться и после того, как линейка была убрана. Устранить это явление удалось удалением имевшейся плёночной шкалы. Вместо неё была приклеена липкая алюминиевая фольга, которой были оклеены и свободные участки корпуса. Экран из фольги следует соединить проводом с любым выводом микроамперметра. Можно попробовать обработать корпус микроамперметра антистатическим средством.

Напечатанную на принтере бумажную шкалу приклеивают на место удалённой. Образец шкалы изображён на рис. 4. Как видите, у этого микроамперметра она заметно нелинейна.

Рис. 4. Образец шкалы

Резистор R1 - импортный невозгораемый. Вместо такого резистора можно установить проволочный мощностью 1...2 Вт. Отечественные металлоплёночные и углеродные резисторы в качестве R1 не подходят. Остальные резисторы общего применения (С1-14, С2-14, С2-33, С1-4, МЛТ, РПМ). Резистор R19 для поверхностного монтажа припаян непосредственно к выводам розетки XS1.

Оксидные конденсаторы - импортные аналоги К50-68. Использование конденсаторов C15, C18, C19 с номинальным напряжением 10 В вместо часто применяемых в импульсных блоках питания оксидных конденсаторов на напряжение 6,3 В значительно повышает надёжность устройства. Плёночный конденсатор C2 ёмкостью 0,033...0,1 мкФ предназначен для работы на переменном напряжении 275 В. Остальные конденсаторы - импортные керамические. Конденсаторы C14, C17 припаяны между выводами соответствующих оксидных конденсаторов. Конденсатор C20 установлен внутри штекера ХР2.

Мощная сборка диодов Шотки S30D40C взята из неисправного компьютерного блока питания. В рассматриваемом устройстве она может работать без теплоотвода. Заменить её можно на MBR3045PT, MBR4045PT, MBR3045WT. MBR4045WT При максимальном токе нагрузки корпус этой сборки нагревается до 60 о С - это самый горячий элемент в устройстве. Вместо диодной сборки можно применить два обычных диода в корпусе DO-201AD, например, MBR350, SR360, 1N5822, соединив их параллельно. К ним со стороны выводов катодов нужно прикрепить дополнительный медный теплоотвод, показанный на рис. 5.

Рис. 5. Дополнительный медный теплоотвод

Вместо диодов 1N4005 подойдут 1 N4006, 1 N4007, UF4007, 1N4937, FR107, КД247Г, КД209Б. Диод FR157 можно заменить на FR207, FM207, FR307, PR3007. Один из перечисленных диодов подойдёт и вместо КД226Б. Заменой диода FR103 может служить любой из UF4003, UF4004, 1N4935GP RG2D, EGP20C, КД247Б. Вместо стабилитрона BZV55C18 подойдут 1N4746A, TZMC-18.

Светодиоды HL1, HL2 - белого цвета свечения из узла подсветки ЖКИ сотового телефонного аппарата. Их приклеивают к микроамперметру цианакрилатным клеем. Транзистор KSP2222 можно заменить любым из PN2222, 2N2222, KN2222, SS9013, SS9014, 2SC815, BC547 или серии КТ645 с учётом различий в назначении выводов.

Полевой транзистор SSS2N60B извлечён из неисправного блока питания и установлен на ребристый алюминиевый теплоотвод с площадью охлаждающей поверхности 20 см 2 , причём все выводы транзистора должны быть электрически изолированы от теплоотвода, при работе блока питания с максимальным током нагрузки этот транзистор нагревается всего до 40 о С. Вместо транзистора SSS2N60B можно применить SSS7N60B, SSS6N60A, SSP10N60B, P5NK60ZF, IRFBIC40, FQPF10N60C.

Оптрон EL817 можно заменить другим четырёхвыводным (SFH617A-2, LTV817, PC817, PS817S, PS2501-1, PC814, PC120, PC123). Вместо микросхемы LM431ACZ подойдёт любая функционально аналогичная в корпусе ТО-92 (TL431, AZ431, AN1431T).

Все дроссели - промышленного изготовления, причём магнитопроводы дросселей L1, L2, L4 - H-образные ферритовые. Сопротивление обмотки дросселя L4 - 0,042 Ом. Чем крупнее этот дроссель по размеру, тем меньше будет нагреваться его обмотка, тем точнее будет измерять ток нагрузки микроамперметр PA1. Дроссель L5 намотан на кольцевом магнитопроводе, чем меньше сопротивление его обмотки и чем больше её индуктивность, тем лучше. Дроссель L3 - надетая на вывод общего катода диодной сборки VD8 ферритовая трубка длиной 5 мм.

Штекер XP2 соединён с конденсатором C19 сдвоенным многожильным проводом 2x2,5 мм 2 длиной 120 см. Розетка XS1 USB-AF закреплена в отверстии корпуса устройства клеем.

Первое включение изготовленного устройства в сеть переменного тока производят без нагрузки через лампу накаливания мощностью 40...60 Вт на 235 В, установленную вместо плавкой вставки FU1. Предварительные испытания под нагрузкой выполняют, заменив FU1 лампой накаливания мощностью 250...300 Вт. Нити ламп накаливания при нормальной работе блока питания не должны светиться. Безошибочно изготовленное из исправных деталей устройство начинает работать сразу.

При необходимости подборкой резистора R13 можно установить показания амперметра. Подбирая резистор R14, устанавливают выходное напряжение блока питания равным 5...5,25 В. Повышенное напряжение компенсирует его падение на проводах, соединяющих блок с нагрузкой.

Изготовленный источник питания можно эксплуатировать совместно с доработанным USB-концентратором , к которому можно будет подключить до четырёх внешних жёстких дисков типоразмера 2,5 дюйма, работающих одновременно. Мощности будет достаточно и для питания, например, таких устройств, как .

Литература

1. Бутов А. Доработка USB-концентратора. - Радио, 2013, № 11, с. 12.

2. БутовА. Преобразователь напряжения 5/9 В для питания радиоприёмников. - Радио, 2013, № 12, с. 24, 25.

Господа Техноманьяки, пришёл и на нашу улицу праздник, точите свои клыки! Будет вам и жёсткая расчленёнка, и допилинг, и чёрный джек со шлюхами проводами!
Мой последний в этом году обзор, пинайте, топчите, рвите на мелкие кусочки - я ваш!
А БП вообще то неплохой, стоит присмотреться, поехали…

Сначала присказка, (только не смейтесь кто читал мой обзор про мышку:) купил я себе чудо-планшет на Windows8.1 PIPO W2, (ну я же просил не смеятся:), а заряжается этот ПИПО от БП 5В со штекером типа Нокиевского тонкого, но может и от микроUSB. А БП на 5В с микроUSB в моём зоопарке разных БП как раз и не нашлось, грусть-беда прямо, непорядок, надддааа мне стало такой БП, кушать понимаешь не могу!
Куда идём мы с пяточком в таких случаях? Да ясень пень - В КИТАЙ! Поковырялся я по ихним китайшопам в поиске нужного мне БП и неожиданно обнаружил очень интересный (по описанию) БП на сайте магазина Banggood , в этом магазин я редко захаживал и делал там только пару заказов, ну да не корову чай покупаю, рискнём, посмотрим что это за товарищ Сухов БП. Попутно там же я заказал 3-и как оказалось неплохих микроUSB OTG кабелька, кому интересно ловите ссылку .
Прислали шустро, проверил, всё оказалось рабочее, планшет заряжает, не греется, вроде что Ышо надо - живи себе радуйся, а нет, не могу я так, кровушка то вампирская кипит, ручки с коготками чешутся, клыки мяяяса жаждут! Аааааа!
Гадёныш оказался прочный, я его и деревянной колотушкой бил и ножичком то ковырял и шила-иголки ему под корпус загонял, а ему хоть бы что! Китайцы клея-дихлорэтана не пожалели, решили меня голодом уморить - недождётесь, ножовка по металлу и самодельный резак сделали своё чёрное дело, вывалили все потроха болезного наружу! Уууууу!
Прижизненной фотографии БП к сожалению не сохранилось, я так спешил, так жаждал крови, что увы даже не сделал фотокерамику, только эта табличка на корпусе напоминает нам о его ТТД:

А это он сразу после вскрытия:

Немного поговорим о вскрываемом, информация из магазина крайне скудная:
Description:
Universal EU 5V 3A Micro USB Cable Charger Power Adapter For Tablet
This is a EU mains 5V 3A charger which is suit for most kind of tablet PC.
Portable universal power adapter charger for tablet PC.
Safe and Easy to use and carry
Elegant and compact designed
Small and light,easy to take away when at home or traveling.

Specification:
Input:100-240V AC,50/60Hz
Output:DC 5V 3A
Weight:70g

После вскрытия он меня первым делом удивил платой - она из СТЕКЛОТЕКСТОЛИТА, что согласитесь нечасто встретишь в нашем подлунном мире! Прежде чем я начну читать некролог и проводить тестирование вскрываемого, посмотрите Ышо несколько фото платы с разных сторон, вернее с 2-х сторон, бока снимать не стал, поверьте это стеклотекстолит:


А это его кабель и чёрный джек, на кабеле хорошо читается маркировка 20AX2C VW-1SC, длина кабеля 90см, размер металлической пипочки чёрного джека микроUSB 7мм (микро однако:)

Теперь результаты тестирования. Все замеры я делал БЕЗ КАБЕЛЯ, подсоединившись прямо к плате, чтобы исключить влияние проводов и контактов, обычно родные кабеля заменяю на силиконовые более гибкие, длинные и толстые, поэтому и отпаял кабель.
Напряжение:
без нагрузки - 5.26В
ток 1.15А - 5.26В
ток 2.4А - 5.25В
Выше 2.4А ток я поднимать не стал, зачем насиловать БП, мне всё равно больше от него не нужно. Пульсации тоже не замерял, поленился:), но учитывая схему с двумя электролитами на выходе и проходным дросселем, могу предположить так же неплохой результат. Схема мне откровенно понравилась, для недорогого устройства она более чем приличная, конечно если сравнивать с имеющимися у меня фирменными БП, то есть некоторые упрощения, ну дык то же фирма и цены у них конские.

Теперь что не понравилось и требует допилиннга:
1) Плата не входит в пазы корпуса, она короче. Решилось проставкой из кембрика:

2) На плате не установлен светик и резистор, нет индикации включения, в розетку воткнул, а есть контакт или нет - не ясно! Установил светик и резистор 1к, просверлил в крышке дырку под светик, заодно насверлил дырок по бокам для охлаждения.
3) Перепутанна маркировка сверху платы "-" и "+". Закрасил красным и чёрным маркерами, сойдёт, не на продажу:)

С впаянными деталями и заменёнными проводами питания, перед окончательной сборкой:

В удлинителе вместе с родным БП от планшета PIPO W2:

Никаких выводов делать не буду, если полезен обзор - буду рад, больше в этом году обещаю не писать, радуйтесь ненавистники! :)))))))))))))))))))))))))))))))))))

P.S. По многочисленным заявкам привожу осциллограммы пульсаций.
Замеры проводились на нагрузке подключенной через кабель БП присоединением к микроUSB через гнездо-маму микроUSB, поэтому результаты замера тока и напряжения отличаются от первоначальных, измерявшихся непосредственно на плате (без кабеля и разъёмов). БП в процессе замеров почти не нагревался.

1) Ток 1А, напряжение на нагрузке 5В:

2) Ток 2А, напряжение на нагрузке 4.6В:

В статье описан несложный и недорогой сетевой блок питания с выходным напряжением 5 В и током нагрузки до 4 А.

Источник питания представляет собой однотактный обратноходовый преобразователь напряжения с самовозбуждением. Отличительная особенность предлагаемого устройства - отсутствие специализированных микросхем, простота и дешевизна в изготовлении.

Основные технические характеристики

Схема устройства показана на рисунке 1. Источник питания содержит сетевой выпрямитель VD1-VD4, по-мехоподавляющий фильтр L1C1-СЗ, преобразователь на коммутирующем транзисторе VT1 и импульсном трансформаторе Т1, выходной выпрямитель VD8 с фильтром C9C10L2 и узел стабилизации, выполненный на стабилизаторе DA1 и оптроне U1.


Рис.1. Принципиальная схема устройства

Устройство работает следующим образом. После включения источника питания приоткрывается коммутирующий транзистор VT1 и по первичной обмотке импульсного трансформатора Т1 начинает протекать ток. В обмотке обратной связи II трансформатора наводится ЭДС, которая по цепи положительной обратной связи - резистор R9, диод VD5, конденсатор С5 поступает на затвор полевого транзистора VT1. В результате чего развивается лавинообразный процесс, приводящий к полному открыванию коммутирующего транзистора. Начинается накопление энергии в трансформаторе Т1. Ток через коммутирующий транзистор VT1 линейно нарастает, а напряжение с датчика тока- резистора R10 через диод VD6 и конденсатор С7 воздействует на базу фототранзистора оптрона U1.1, приоткрывая его, из-за чего уменьшается напряжение на затворе полевого транзистора. Начинается обратный процесс, приводящий к закрыванию коммутирующего транзистора VT1. В этот момент открывается диод VD8 и энергия, накопленная в трансформаторе Т1, передается в конденсатор выходного фильтра С9.

Когда выходное напряжение по какой-либо причине превысит номинальное значение, стабилизатор DA1 откроется и через него и последовательно включенный излучающий диод оптрона U1.2 начинает протекать ток. Излучение диода приводит к более раннему открыванию транзистора оптрона, в результате чего время открытого состояния коммутирующего транзистора уменьшается, энергии в трансформаторе запасается меньше, а следовательно, выходное напряжение уменьшается.

Если же выходное напряжение понижается, ток через излучающий диод оптрона уменьшается, а транзистор оптрона закрывается. В результате время открытого состояния коммутирующего транзистора увеличивается, энергии в трансформаторе запасается больше и выходное напряжение восстанавливается.

Резистор R3 необходим для уменьшения влияния темнового тока транзистора оптрона и улучшения термостабильности всего устройства. Конденсатор С7 повышает устойчивость работы источника питания. Цепь C6R8 форсирует процессы переключения транзистора VT1 и увеличивает КПД устройства.

По приведенной схеме были изготовлены несколько десятков источников питания с выходной мощностью 15...25 Вт.

На месте коммутирующего транзистора VT1 можно использовать как полевые, так и биполярные транзисторы, например, серий 2Т828, 2Т839, КТ872, КП707, BUZ90 и т. д. Транзисторный оптрон 4N35 заменим любым из серий АОТ110, АОТ126, АОТ128, а стабилизатор КР142ЕН19А - TL431. Однако лучшие результаты получились с импортными элементами (BUZ90, 4N35, TL431).

Все резисторы в источнике питания - для поверхностного монтажа типоразмера 1206 мощностью 0,25 Вт, конденсаторы С1 -СЗ, С8 - К10-47в на напряжение 500 В, С5-С7 - для поверхностного монтажа типоразмера 0805, остальные - любые оксидные.

Трансформатор Т1 наматывают на двух, сложенных вместе, кольцевых магнитопроводах К19x11x6,7 из пермаллоя МП 140. Первичная обмотка содержит 180 витков провода ПЭВ-2 0,35, обмотка II - 8 витков провода ПЭВ-2 0,2, обмотка III на выходное напряжение 5В - 7 витков из пяти проводников ПЭВ-2 0,56. Порядок намотки соответствует их нумерации, причем витки каждой обмотки необходимо равномерно распределить по всему периметру магнитопровода.

Дроссели L1 и L2 выполнены на кольцевых магнитопроводах К15x7x6,7 из пермаллоя МП140. Первый содержит две обмотки по 30 витков в каждой, намотанных проводом ПЭВ-2 0,2 на разных половинах магнитопровода, второй наматывают проводом ПЭВ-2 0,8 в один слой по всей длине магнитопровода сколько уместится.

Чтобы уменьшить пульсации выходного напряжения, общую точку конденсаторов С2 и СЗ сначала следует соединить с минусовым выводом конденсатора С10, а затем с остальными деталями - обмоткой III трансформатора Т1, минусовым выводом конденсатора С9, резистором R12 и выводом 2 стабилизатора DA1.

Устройство собрано на печатной плате размерами 80x60 мм. На одной стороне платы расположены печатные проводники и элементы для поверхностного монтажа, а также коммутирующий транзистор VT1 и диод VD8, которые прижаты к алюминиевой пластине-теплоотводу таких же размеров, а на другой - все остальные.

Первое включение прибора лучше производить от источника питания с ограничением тока, например, Б5-50, причем подавать следует сразу рабочее напряжение, а не повышать его постепенно. Налаживание устройства заключается в подстройке выходного напряжения делителем R11R12 и, если необходимо, установке датчиком тока R10 порога ограничения выходной мощности (начала резкого падения выходного напряжения при увеличении тока нагрузки).

Для получения другого выходного напряжения нужно пропорционально изменить число витков обмотки III трансформатора Т1 и коэффициент деления делителя R11R12.

При эксплуатации устройства следует помнить, что его минусовый вывод гальванически связан с сетью.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1 Линейный регулятор КР142ЕН19А 1 В блокнот
VT1 Транзистор КП707В1 1 В блокнот
VD1-VD4, VD7 Диод

КД258Г

5 В блокнот
VD5, VD7 Диод КД629АС9 2 В блокнот
VD8 Диод КД238ВС 1 В блокнот
U1 Оптопара

4N35M

1 В блокнот
С1-С3, С7 Конденсатор 3300 пФ 4 В блокнот
С4 10 мкФ 400 В 1 В блокнот
С5, С8 Конденсатор 0.022 мкФ 2 В блокнот
С6 Конденсатор 680 пФ 1 В блокнот
С9 Электролитический конденсатор 1000 мкФ 16 В 1 В блокнот
С10 Электролитический конденсатор 100 мкФ 16 В 1 В блокнот
R1, R2, R4-R7 Резистор

180 кОм

6 В блокнот
R3 Резистор

100 кОм

1 В блокнот
R8 Резистор

82 Ом

1 В блокнот
R9 Резистор

3.6 кОм

1



Код товара 7692
11753 просмотра(ов)

На складе

В связи с праздниками с 27-го декабря по 8 января сроки доставки на данный товар могут отличаться от указанных на сайте. Точные сроки можно уточнить у менеджера в чате, по телефону, или оставив заявку на сайте.



Описание Телеинформсвязь БП-5А

Источник электропитания Телеинформсвязь БП-5А предназначен для питания электрорадиоаппаратуры выпрямленным стабилизированным напряжением 12 В, током не более 5 А. Подходит для питания практически всех типов черно-белых и цветных видеокамер, видеоглазков, блоков памяти ФАН,ИК-подсветок.Блок питания Телеинформсвязь БП-5А имеет электронную защиту от короткого замыкания на выходе.

Запрещается включать Телеинформсвязь БП-5А в сеть при снятой крышке, а также при разбитом корпусе или крышке. Замену плавкой вставки запрещается производить при включенном в сеть блоке питания.Подготовка к работе и правила эксплуатации.
Для проверки работоспособности Телеинформсвязь БП-5А включить его в сеть, при этом должен засветиться на верхней крышке индикатор красного цвета. Для замены плавкой вставки необходимо снять верхнюю крышку. Провод для питания аппаратуры подключается к винтовым зажимам на нижней стороне корпуса. При подключении к Телеинформсвязь БП-5А соблюдайте полярность. Блок питания предназначен для работы внутри помещений.

Технические характеристики Телеинформсвязь БП-5А

  • Единица измерения: 1 шт
  • Габариты (мм): 200x130x100
  • Масса (кг): 0.50
  • Номинальное переменное напряжение сети 220В ± 15В
  • Частота 50Гц
  • Номинальный, потребляемый от сети ток 0,45А
  • Выходное напряжение 12В ± 0,35В
  • Максимальный выпрямленный ток 5А
  • Класс защиты от поражения эл. током 2
  • Напряжение пульсации на выходе не более 5 мВ (вых.4,5В)
  • Габаритные размеры 200х130х100 мм
  • Рабочая температура +5…+40°С
  • Влажность до 80%